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ABSTRACT . - ‘ .

Six pairs of stiffened cylinders, machined from thick tubes and identical
except for tho sizo and spacing of the frames at the ends, were subjected to
external hydrostatic pressure to cstablish the adequacy of a design procedure
for the end bays. All the cylinders failed by axisymmetric shell yielding, four

-

in the end bay, four in tho first full-length bay, and four in the second full-length
" bay. For each pair of identical cylinders, the locations of damage at failure’

.
—— . s gl

wete identical and the collapse pressures differed by less than 1 percent whon
adjusted to a common yield strength, Test results indicated that with the end
conditions established by the end-bay theory of TMB Report 1085, the collapse
pressure could be incrensed as much as 5 percent and failure could be shilted

e

away from the ends of the cylinder.

INTRODUCTION

In research with stiffened cylindrical shells, failures in the axisymmeuic'yield“mod‘e
have invariably occurred in bays adjacent to holding bulkheads at lower prossures than those --
predicted by ‘‘equal strongth bay" analysis.

In an effort to counteract the wonkeninginfluences of end effects, the David Taylor —ere-

Model Basin developed the design procodure in Reference 1* to oblain an optimum design by

which all stiffeners defloct the same amount at failure and no bay is weakenod by the influence :

of the bulkheads. B ‘ i
To validato the adequacy of the design ; -...dure a serios of model tests was initiated "~ :

to investigato six dilfctont ond conditions. The genetal objectives were as follows:

1, To establish tho adoquacy of the oplimum dosign procedute by observations of collapse
pressuros. '

2. To vority the strain distribution io the end bays as predicted Ly the optimum design
procedure by measurement of strains, -

In ordoe that rosults might serve to verify the established objectives, parametors
sffocting tho collapse pressuco and fabtication of those models wore carefully conteolled.
The models, theit fabrication and instrumontation, and tho model Wwsts are describod in this
roport. In addition, oxparimon&l strains, dollections, ana collapse prossutej aro compared .-t
with theoretical values. . : .

ke

*Refcrences ore listed on pege 22,
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DESCRIPTION QF MODELS

The models investigated wore designed to study the followiny vad conditions:
Case I ~ Investigation of a design where all frames were of equal area and bays were of
equal length,
Case Il ~ Same as Case I, except that the end bays were shortened by 33 percent in accordanca
with earlier practice at the Model Basin.

Case III — Same as Case I, except that the end bays were lengthened by 11 percent,

Case IV — The end bays and frames were dosigned with the maximum principal stress criterion
applicable ut the bulkheads, but neglecting the beam-column effect resulting from the loads on
the ends of the cylinder, End bays were 11 percent lon’er and end frumes were about 20
percent larger than typical ones. ‘
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. To substantiate each collapse pressure, two identical modeols were machined from a '

X el . . LY LR I P > O O R Q .
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Case V — Investigation of a design in which the beam-column effect was considered, End
bays and frames wero designed for the same conditions of Case IV. End bays were about 2
percont longor and end frames were 25 percent larger than typical ones.

Case VI — Same as Case V, except that the Hencky-Von Mises yield criterion rather than the
maximum principal stress criterion was used as a basis for yielding at the bulkheads.! Eund
bays were 8 percent longer and end frames were 23 percent larger than typicals.

forged steel gun-barrel liner for cach of the six different end conditions. The dimensions of
a liner and the general location in the liner for identical models ate shown in Figure 1. The
_sections of the liner denoted A, B, and C are regions from which specimens were obtained
to deterinine the yield strength along the length of a liner. The specimens were removed from
locations in the liner such that the compressive yield strengths obtained represented the o
actual yield strengths in the vicinity of the shell of the models. This minimized errors due
to variation of yield strength across the thickness of the liner. An average value of yield
strength was selocted for each model (e.g., for Model EB-1 the average yield strength for the
transverse and ciroumferential directions obtained from Section A and Section B of Figute 1 ,
_was adopted as the compressivo yield strength).

Model geometrios and details of construction are available in Figure 2and in References
9, 3, and 4; in addition, the yield strengths for the difforent cases considercd are listed in.
Table 1. Howaver, the {ollowing were hold constant for all models:

Symbol - Delinition Dimensions ‘ :

2R Dismator to the median surface of the shell - 16.8386 in.
4 Sholl thickness _ 0.0858 in.
L,  Conter-to-venter distance botwoen sdjacent frames, / lg” I 7
oxclusive of the end bays 1.966 fo. 74
¢ Ovorall framo dopth “ 0.88194n. . bw
A, Ctoss-soctional frame sros, oxclusive of the end ' :, e “ng?
framos ' 0.0511 in.2 ° po o
A Young's modulus of 30,000,000 psi and & Poigson’s ratio of 0.3 wote assumed, f\:"’( !
Based oa the average compressive yiold strength in the twelvo modols, }

A\;engo A (Thinness factor) « {/(L/Qlt)’/(l./‘ﬂe? Jc,/E = 0.694

where L is the unsupported longth of model
E is Younp's inodulus, and

o, is the avoraye somprossive yiold strongth in the sholl for the twolve models,




TABLE 1

Yicld Strengths of Material
The average yield strength of all mo&els was 66,825 psi.

Yield Strength of
Shell Natesial
Case Hodel Avetage
9y o, for ldentical
psi Models
psi
t EB-5 68,830 61,915
EB6 62,000
] €B-3 65,800 65,300
1l £B-7 g,670 68,730 P,
€B-8 68,790 a1
v £8-1 66,400 66,575 {. o >
EB-2 66,750 . {,‘,-
v EB-9 66,750 61,000 RS
EB-10 67,250 9 S
i el | e 64,830 .
EB-12 64,830
CASE | | CASE 1 | CASE 1 | CASE IV | CASE V | CASEWI
w % 1035 | 039 | 038 ] 03w | 038 | oam
g Lolooms | oooms | oon | ooy ] ooum | o
“ite fC000 | oet | oow | ooose | 008y | o0
Le [adw Jas | [ [ an ] e
AJAS 11D Wt 120y 1 L% 1ol
W7 B 0.6 | Lioy |10y | iol |16
*Ralis of ctoss-seclisasl aicn A‘ o1 ead frame b rovs-seciisas
ares A ol typical trame,
“*Ratio of vasuppotied feagth L, of end by lo mswppotted leglh L
of lypical byy,
07
'.’\ I"“
Figuro 2 ~ Goometric Characteristics of End-Bay Modols AR
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3 Lin
After each model had begn machined, Kaovy Steel Cyinder "
‘meoasurements were taken in the laboratory to B
verily that the model dimensions, i.e., frame /
dimensions, {rame spacing, shell thickness, / e N ke P .
. . /, ’ o A4
and inner diameter, conformed with the toler s / K ‘1
'!N

ances specified in Reforonces 2 through 4.

Aftarward, each model together with test Figuro ¢ — Schematic Disgram of End-Bay
spocimens ohtained from sections sdjacont Modol lnstalled in Tank

to the model wore stross-relieved at 1000°F

for one hour and then allowed to sir cool. This final stop in the fabeication of each model was
to obtain stress-free models. On the assumption that machiniag stresses were the same for
mode! and test specimens, the latlor were stress-relieved along with the modols to oliuin the
closest approximation to the compressive yield strongth of cach model.

The yeneral appoarance of a typical end-bay model is shown in Figure 3. Each model
had five full-lonzth bays, six T-shaped exterior ftames, and two comparatively heavy roctan-
gular end stiffeners; oach was machined from a thick tube. The ends of the models weee
soaled by heavy ciroular bulkheads shown schemativally in Figure 4.

INSTRUMENTATION AND TEST PROCEDURE

Each model was instrumented on Ltho inlotior and exterior surfuces with 8R4 strain
gagos to obtain an indication of its behavior endet load. In poneral, Type A-7 gages were
used to measuro circumferontial steaing and Type A-8 gapes woro used to measuro Lungitudiaal

strains,

o e apae v -

o i e s
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Excopt for Model EB-1 which had gages mounted on four generators of the cylinder,
gages wore installed along two generators, 180 dog apart. Onc gencrator was extensively
instrumented adjacent to tho heavy end bulkheads and on the centerlines of bays and frames
as shown schematically in Table 2. A few solected locations were repested on the second
generator. Variations in the locations of gages from model to model are listed in Table 2.
The gage locations were selected to provide the following information:

1. Strein distributions in the end bays to check the steains calculated by the theory
described in Reference 1,

2. Strain distributions in the first typical bays for comparison with those for a centeally
located typical bay, and

3. Strain distcibutions in a centrally located bay which is not influenced by the ends of
the model. '

After each model had tuen instrumented, all external geges were subjected to a pres-
sure of 1000 psi while the model was free {looded to determine nny onsitivity of the gages
o pressure. It was assumed that the steain gage was satisfactory whon the difference in the
strain measurements taken at no load and at 1000 psi was less than 50uin/in. Those gages
measuring strains in excess of 50 uin/in. were replaced.. .

Each model was tested in the TMB 20-in. dinmeter, 3000-psi pressute tunk. Inasmuch
as the volume of the model was small compared with that of the tank, the volume of the tank
was reduced to minimize the encrgy roleascd at (nilure and, hience, the damage to tho models,
Volume was reduced by placing a heavy steel cylindor (Figure 4} on Lhe bottom of the tank.
0il was uscd as the prossute medium,

Two loading runs wore conducted for each modal in an uffert to minimize the nonlincarity
of strains and thus onsuto & more procise dotermination of strain-sonsitivity factoes (the slopes
of ptessuro-strain plots), Prossure incromonts were moasutod by moans of 2 1000-psi Bousdons
tube gage graduated in 5«psi incroments. Strains wute record=d with Buldwin steein indicators,
Loading schedules aro given in Tablo 3. '

TEST R_SULTS

Experimental collapse prossures ate listed in Tablo 4. Since tho yield ctrengths of
the modols varied, the collapse pressures of tho difleront madels cunnot be compured directly
with one znother until the collapse prossures have been adjusts:! to a coman yicld strongth,
The yiold strenpth solected for this ndjustment was the averayn of all the waals. The
collapse prossures adjustod to tho average yiold strongthol 68,423 psi aro ulxo listed in
Tablo ¢.

Tho modo of failure for oach modol was identified an sxisyamelric yiclding evidenced
by coteugation of the sholl botwoan stiffences. In ouch medol, o formation Govweeed vory showly

o e e




" TABLE 2

Gage Locations for Heavily Instrumented Generator of Models®

By

Ratios of Distances liom Neatest Frame oi Butkhead to Frame Spacung
. " Gage -
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TABLE 3 - Loading Schedules

Pressures at Which Strains Were Measuted, psi

Models EB-1 through EB-10

Model £B-11 and 12

Run 1 Run 2 Run 1 Run 2
0 0 0 0
100 300 200 300
200 600 409 600
300 700 500 700
- §00 . 800 600 800
500 B25* 0 850
© 600 850 900 -
-0 875** 820 .
8251 : 940
950 1 .

*Applicable only for Model EB-6.
*#*Appliceble only for Models EB-4 and Eé—lO.
{Not applicable for Siodels EB-3 and EB.9,
$iNot spplicable for Models EB-3, 4, 6, 7, and 9.

TABLE 4 ~ Summary of Experimental and Theoretical Collapse Pressures

e ettt dbte =t e e

K Experimental C p
‘| Experimental Collapse Pressure, psi Avetaged xpeu'nc.ntal oliapse Fressute
, . . il Experimental | Theoretical Collapse Pressure p
ailure . , u
Model Case | Areas | COMPSE T\ Criterion | Plestic | Plastn  pue
Corrected to Pressure Hers &
Actual 0. = 66.825 psi : Hidbay Hinge | Mo Koo
y = 20000 P psi Nidpiane Theoty |#Y off;-m-'(_w '
ane
£B-5 960 932 | |Fust 940 0.934 0367 | Gy~ owv
EB-§ 950 948 m\cu -
EB-3 921 835 y |t 9% 0.931 0,963 65 W
EB-4 925 937 EZS'“'
e87 | 9 %23 W |endBay| 33 0.628 e | §77 v
£B-8 965 97 . .
EB-} 975 982 ' N
W |EndBay| 079 0973 00 of.
Aese | 9n 976 i M| 7
B9 950 " 951 g |Socond 948.5 0,943 0.9% | 92 9.
EB-10| 952 916 ;{3‘“' fo3
EB-1l 450 79 v | Seeond 954 0.978 L {41 W
8 ! Typleal .
EB12| 950 999 81y T I P
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Figure 5 — Identical Models EB-11 and EB-12 (Case VI) Alter Collapse

with practically no noise and extended about 80 deg around the model, Failure modes were
identical in form and in general location for identical models as shown, for example, in
Figute 5. Failwes located in an end bay (Case 1V), in a first typical bay (Case I), and in a
second typical bay (Case V) are shown in Figure 6. Case V models had visible damage in the
first typical beys, but, like Caso VI models, they failed initially in the second typicel bay.

e Strain-sensitivity factors in microinches per inch per psi of pressure are given in
Tables 5 through 7. The ciroumferontial steain-sensitivity factors in Table 5 sre averaged
. values for the interior and exterior surfaces, and, in general, tho fectors have been aversged

for duplicate longitudinal locations (where strains were measured on two generators). Typical
pressure-strain curves from which these sensitivity faclors wero obtained are shown in the

Appendix.
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Experimental Circumfcrential Strain-Sensitivity Factors

Strain-Sensitvity Faclots, u in/psi

Distance (2.°7)

|
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§
fen:(?' in Terms of Case IV Case It Case | Case (1 Case V Case Vi :
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TABLE ¢
Experimental Longitudinal Strain-Sonsitivity Factors (Exterior Surface)
| Stain-Seasitivi i/
ot Distance (z/1,) rain-Sensitivity Factors, pin/psi
; in Terms of c v ¢
Location Bay Length Case IV ase il Case | Case 11l Case ase Vi
EB-l | €EB-2| EB.3 | EB-A | EB-5 ) EB-6| EB.7 | £B-8} EB.9 | £B-I0 §B~Il EB-12
0.13 +LEA V2L NG, [+039] = 14050+ 047 +0.61| 40,50 +0.52] +0.45 ] +0.54
0.21
Upper Erg 0.50 -1719]1-233!-1.32 ~173]-2.0¢|-2.631-1.871~1.68] ~1.52| -2.04 § =1.93
Bay 0.69 ~0.88| ~2.11 -2 <178 -1941 173 | - 1.88
0.18 - 1.2 .
0.87 ~-1.83 -1.30 ~151] -1.23| ~ L3¢ -0.98 | -0.71
Fust .
Frame 1.00
0.13
Fitst Typical 0.15 _
Bay 0.32 : ’
0.50 =135 -158 =189 [ =137 =037 Y -85 -113] < 1.26] - 133 ] - L.37 ] - 1.0
0.68 :
Second
Fame 1.00
Bay 0.50 -1 -1.63 ~1.08 =140 -106] 118 { - L34 | =120
Thitd
Frame 1.00
Bay 0.50 ~108] 137 ~152 | -1.28 - 0.23 |- 040 | ~ L3S | - 0.08| - LAS-0I0 [ ~1.28 | -0.28
Foutth
Fuame 1.00
Boy 0.50 <Lt} =130 =116
Fifth
Frame 1.00
Bay 0.50 -1.26 «1.80( =208 123 =00 - LD} =006 ) = L3} - AR ) LAk =018
Sixth
Frama 1.00
012 ' S0l
Lowet End 0.50 - 1.6 =1.68] - 1.4G <181 <20y -2.04
Bay 0.1% .
0.06 +0.37 10,551 + 0,00 03 + 0,61
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TABLE 7

Experimental Longitudinal Steain-Sensitivity Factots (Interior Surface)

S Serii —— i
Distance (/L) train-Sensitivily Factors, uin/psi :
General in Terms of Case IV Case It Case | Case 11l Case V Case VI :
Location Bay Length
£p-) | €B-2) €8-3| €B-4 | EB-5 | £8.6| EB.7 | EB-8 | EB.9 |EB.10| €B-11 {EB-12
I - §
0.13 ~2551-3.97] -3.54 {-2.23 |-2.80 |~4.57| ~4.10 |-2.26{ - 170 |~ L86 | - 2.80 |~ 2045
0.21 : - .;
Upper End 0.50 +0,161-0,25} - 1.80 ~0,15 {~0,66( -0.42 {-0.03]-0.08 |-0.06 | 40,08 . 0as! .
Bay 0.69 +0.251-0.15 -0.,08 | -0.08 +0.174 i
0.78. . -1l ) :
0.87 +0,24 | -0.85 B -0.63 {-0.57(-2.78 -0.46 |-0.60 |
Fiest ’ 5
Frame 1.60 13010211 =115 | -0.71 |-1.25 |-1.33] ~1.53 |~ 116 ]-~10.37 [-128] -1.58 ;
013 -0.28 -122 !
| 82| ||
Bay 0.50 0,20 | =0.371 -0.16 | +0.33 |-0.23 |~ 0.26{ -0.41 {-0.21} -0.10 | ~0.15] -0.21 |-0.201
0.68 ~046 .
Second . L
Frame 1.00 -1.56 -2.13 -1.25 ~L94 -8 L3 -1} -1 o
Bay 0.50 -0,35 -0,60 -0.31 ~0.47 ~0,25§-0,35 -0.38 1-0.36
Thid :
Frame 1,00 =145 -2.05 -1.30 |-1.83 161|103 =125 =126 |-LT?
Bay 0.50 -0.30| <0.37] 047 | -0.32 |-0.28 [-0.36] ~0.35 [-0.24[-0.31 | -0.36 [ -0.34 }-0.32
Fourth
Frame 1.00 -180f-078 -1
Bay 0.50 0331 -0.35 | -0.37
Fln
Frame 1.00 =507 183 -0
Bay 0.50 -0.08 «0.16] +0.30 [+0.10 |-0.02{ -0.06 | ~0.05} -0.10| ~043] -0.23 [-0.24
Sixth . '
Frame 1.00 - 1.00 =108 <125 =136 [~ 1,02} ~1.08|-0.68; - 13| =146 ~ 1.0 |~ 358
——
0.12 0.1
Lowet £nd 0.50 -0,11 + 045 140,18 -0237 4033101
Bay 0.19
0.8 «2.4 -3.62( -2.50 -2.87 =340
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COMPARISON OF EXPERIMENT WITH THEORY -

Experimental collapse pressures are compared with theoretical pressures in Tablo 4.
Criteria for shell yield considered most applicable for this failure mode aro the Hencky-Von
Mises criterion® for a midplane point at midbay and the plastic-hinge theory.® For the
geometry investigated, the first theory gave a pressure of 1006 psi and the plastic-hinge theory
gave a value of 972 psi. Ratios of experimental pressures corrected for the average )xeld
strength (86,825 psi) to these theoretical pressures are given in Table 4.

Of all the models tested, those of Case VI collapsed at pressures agreeing best with
pressure computed by the Hencky-Von Mises membrane-stress method (within 2% percent).

The experimental pressures for Case VI models were also in close agroement with the pres-
sures computed by the plastic hinge theory (within 1% percent). Although the experimental .
collapse pressures of Case IV agreed well with pressures computed by the plastic hinge
methods, the desngn procedure for this case is less ngorous than that for the Case VI models.
Therefore, the Case VI procedure is recommended.

Steains measured for Case VI models are compared in Figure 7 with strains determined
by the theory of Reference 1. Two theoretical curves are shown: one [or the elastic strain
sensitivities before yiolding occurs at the bulkhoads (obtained for a pressure equal to 200 psi),
and the other for strain sensitivities after yielding at the bulkheads and near collapse pressure
(obtained for a pressure equal to 920 psi). The experimental strains shown are averaged values
for Models ER-11 and EB-12.

Experimental circumferential straing in the ond bays are higher than theoretical strains
in the elastic range and lower in the yield range as shown in Figures 7a and Tb. Nevertheless,
agrecment between theory and éxperiment is good, Comparisor{ of longitudinal straing on the
exterior gurface (Figure To) indicates that exparimental strains in the «nd bays are slightly
less than the theoretical strains in the elastio range, but they are larger than caloulated strains
in the yield range. In Figure 7d, the experimental longitudinal strains on the interior shell
surface appear to be generally lower than calculated strains. Howevet, in general for Fig-

" ures Ta through Td the plotted experimental points agree woll with the curve of theorotical
strain along the length of the models.

DISCUSSION OF RESULTS

Tost results obtained from this secies of models wero consistent. The maximum
difforonce betwoen collapso prossures fot idontical pairs of models was 1 porcent; the ovarall
oh'ungo in modol strength imposcd by the varying ond conditinns was on the order of & porcent.
Also, for all models, the mode of failure was idontical as was the bay of fuilure for identical
modols; hence, tho mode of failure was clearly established for ench case. Madels tested for
tho first throe cuses, whoro all framos were of equal aron and the ondshey lengths varied,wore
ahout b porcent woakor than Cuso VI modols. Incrossing the size of the end framos togethor

.
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with selecting endbay spacing based on theoretina! considerations for the remaining Cases

(IV, V, VI) resulted in increased collapse pressimas. )
The good agreement between the collapse pressures for the models of Case VI and the

theorotical pressures can be attributed to having designed the models to conform with the

assumptions of the optimum design procedures of Referonce 1, (For Case VI, the beam-columa

effect is taken into account and the Hencky-Von Mises criterion of yielding is assumed at the

‘bulkhoads,) Case VI models and Case IV models were stronger (by 8.7 and 3.2 percent, respec-

tively), than Case V models, (For Case V, the beam-column effect is also considered, but the

maximum stress oriterion is assumed at the bulkheads. For Case 1V the beam-column effect

is neglected and only the maximum stress criterion is considered.)

Experimontal strain sensitivities for Models Ef-11 and EB-12 for both the elastic range

and just prior to collapse are shown in Figure 7. Thoy agree favorably with the theorotical
curves computed using tho end-bay theory,! Discrepancies between the assumed properties
(Polsson's ratio and modulus of elasticity) and those actually existing in the material of the
models are probably partly rosponsible for the differonce betweon theory and exporiment in the
typical bays.

Fipuro 8 indicates for the optimum end-bay design (Case V1) how the deflections at the
onds of the modo! compare with those at the middle of tho centrally located bay which is least
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disturbed by the ends of the model. It should be noted that prior to yielding at the bulkhead
« at 300 psi Frames 2 and 3 deflected about the same whereas after yielding at the bulkhead
at 940 psi Frame 3 has deflected more than Frame 2. Also, it should be noted that at the
pressure {940 psi) approaching the collapse .pressure, Frames ¢ and 3 deflected less than at
300 psi as did the shell between Frames 1 and 2 and Frames 2 and 3. At the higher pressure
the deflections in none of the bays exceeded that of the central bay. It will also be noticed
that deflections of Frames 1 and 2 which are quite different in the elastic range tend to
equalize at the higher pressure where plastic action occurs at the bulkhead as assumed in
the theory.-

CONCLUSIONS

Test results lead to the followiﬂg conclusions:

1. The theory for optimum end-bay design is confirmed experimentally in Case VI. For
the geometries tested, the end bay determined by the optimum design procedure is 5 percent
stronger than an end bay arbitrarily selected as two-thirds of a typical bay.

2. The strains at the ends of a cylinder can be determined accurately by the end-bay
theory. The tests of the optimum design confirm the theoretical results which indicate that
the deflections of the first and second frames are different in the elastic range but tend to
become equal after yielding occurs at the bulkheads.

3. Where the end-bay design is optimum, fajlure can occur in bays other than the end bay
or first typical bay. .

4. The collapse pressure for models with ends of optimum design is closely predicted
with the plastic hinge theory,

RECOMMENDATIONS

It is rocommonded that theoretical work bo continued to develop an end-bay design
procedure in which the length of the end bay is varied with the shell thickness of this bay
rather than with the size of the first frame.
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~ APPENDIX \
PRESSURE-STRAIN PLOTS

Accumulated strain was plotted at each pressure increment with pressure as the ordinate
and strain as the abscissa. Sample.plots are presented in Figures 9 and 10. Since the per-
manent set was practically sero for the first run, only one curve is shown {or both the first
and second runs. The number in parenthoses on each pressure-strain curve is the strain-

sensitivity fuctor.
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